
Sparse Identification of a Predator-Prey System from Simulation Data of a
Convection Model

Magnus Dam,1 Morten Brøns,2 Jens Juul Rasmussen,3 Volker Naulin,3 and Jan S. Hesthaven4

1)Department of Applied Mathematics and Computer Science, Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmark
2)Department of Applied Mathematics and Computer Science, Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmark
3)Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby,
Denmark
4)Mathematics Institute of Computational Science and Engineering, École Polytechnique Fédérale de Lausanne,
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The use of low-dimensional dynamical systems as reduced models for plasma dynamics is useful as solving
an initial value problem requires much less computational resources than fluid simulations. We utilize a
data-driven modeling approach to identify a reduced model from simulation data of a convection problem.
A convection model with a pressure source centered at the inner boundary models the edge dynamics of a
magnetically confined plasma. The convection problem undergoes a sequence of bifurcations as the strength
of the pressure source increases. The time evolution of the energies of the pressure profile, the turbulent flow,
and the zonal flow capture the fundamental dynamic behavior of the full system. By applying the Sparse
Identification of Nonlinear Dynamics (SINDy) method we identify a predator-prey type dynamical system
that approximates the underlying dynamics of the three energy state variables. A bifurcation analysis of
the system reveals consistency between the bifurcation structures, observed for the simulation data, and the
identified underlying system.

I. INTRODUCTION

The perpendicular edge transport of a magnetically
confined plasma is largely governed by convective plasma
flows. The plasma flows can be decomposed into a non-
zonal (turbulent, fluctuating) flow and a zonal flow. The
non-zonal flow increases the radial transport and gener-
ates a Reynolds stress that drives the zonal flow. The
zonal flow is in the poloidal direction along the magnetic
flux surfaces and varies radially. This sheared poloidal
flow constitutes a transport barrier that decreases the
radial transport of plasma. While the zonal flow is
turbulence-driven it also suppresses the turbulent flow.
This type of interaction between the turbulent energy
and the zonal flow energy resembles mathematically the
interaction between populations of predators and preys.
The interaction between turbulent flow and zonal flow
has therefore been modeled by predator-prey systems,
where the zonal flow acts as the predator and the tur-
bulent flow acts as the prey1,2. The creation of an edge
transport barrier formed by a sheared zonal flow is closely
related to the L–H transition3. Ordinary differential
equation (ODE) models for the L–H transition are based
on the predator-prey relationship between zonal flow and
turbulent flow, and incorporate a potential energy related
to the pressure profile as an additional state variable4–12.
Miki et al. 13 and Wu et al. 14 have both suggested 1D
partial differential equation (PDE) models for the L–H
transition based on this predator-prey relationship.

Reduced ODE models, describing the interaction be-
tween zonal flow and turbulent flow, are very useful.
ODE models require much less computational resources

to solve and they are much easier to analyze than the cor-
responding fluid equations. When building a mathemat-
ical model there are basically two different approaches to
choose among. The first one is physical modeling where
the model is derived from theory. The second approach
is system identification15 where observed data from the
real system is used to model the system. System identifi-
cation is a large and diverse field and many methods exist
for determining the governing equations of a system from
data. The choice of an identification method depends on
the desired model type, prior knowledge about the model
structure, and other model assumptions.

Most current predator-prey models for the interac-
tion between zonal flow and turbulent flow are ob-
tained by physical modeling with many approximations
and assumptions. The Ball-Dewar-Sugama model5 is
loosely derived from approximate resistive magnetohy-
drodynamics momentum and pressure convection equa-
tions, and the Kim-Diamond model6 is loosely derived
from the linearized wave-kinetic equation. Even though
these models reproduce qualitative dynamics similar to
experimental observations they fail to be quantitatively
predictive. Kobayashi, Gürcan, and Diamond 16 use an
identification approach where they assume that a Lotka-
Volterra model describes the interaction between zonal
flow and turbulent flow, and fit the model coefficients to
data obtained from full gyrokinetic simulations. How-
ever, this simple model fails to describe the dynamics
away from the limit cycle attractor.

This paper demonstrates an alternative approach for
building ODE models for plasma dynamics. We extract
a model from data instead of obtaining the model us-
ing physics-based arguments. Specifically, we determine
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the underlying structure of a nonlinear dynamical system
from simulations of a convection problem with a pres-
sure source centered at the left boundary. The convec-
tion problem undergoes a sequence of transitions as the
strength of the pressure source increases. These transi-
tions are similar to the ones observed in more accurate
plasma models. The time evolution of the energies of the
pressure profile, the turbulent flow, and the zonal flow
captures the bifurcating behavior of the full convection
problem. We model these three energy state variables
with a continuous deterministic dynamical system and
assume no prior knowledge about the structure of the
dynamical system. For the system identification process
we apply the SINDy method17 and aim to build a model
that quantitatively reproduces the dynamics and bifur-
cations observed in the simulation data. The method is
general enough that the same approach can be used if
the simulation data were replaced by measurement data.

II. SPARSE IDENTIFICATION OF NONLINEAR
DYNAMICAL SYSTEMS (SINDY)

SINDy17 is a method that seeks to identify an under-
lying dynamical system from time-series data. We give
here a brief summary of the algorithm description. Based
on a set of data we seek a dynamical system,

ẋ = f(x), x ∈ Rn. (1)

Here x(t) =
[
x1(t) x2(t) · · · xn(t)

]ᵀ
is the state vari-

able vector and f =
[
f1(x) f2(x) · · · fn(x)

]ᵀ
is the

vector field. We want to determine the function f from
data. In the data-collection process we sample a time-
series of the state x(t) and either measure the derivative
ẋ(t) or approximate it numerically from the time-series of
x(t). The data x(t`) and ẋ(t`), ` = 1, . . . ,m is arranged
into two matrices

X =


xᵀ(t1)
xᵀ(t2)

...
xᵀ(tm)

 =


x1(t1) x2(t1) · · · xn(t1)
x1(t2) x2(t2) · · · xn(t2)

...
...

. . .
...

x1(tm) x2(tm) · · · xn(tm)

 ,

Ẋ =


ẋᵀ(t1)
ẋᵀ(t2)

...
ẋᵀ(tm)

 =


ẋ1(t1) ẋ2(t1) · · · ẋn(t1)
ẋ1(t2) ẋ2(t2) · · · ẋn(t2)

...
...

. . .
...

ẋ1(tm) ẋ2(tm) · · · ẋn(tm)

 .
We construct an augmented library Θ(X) consisting of
candidate functions of the columns of X. The candidate
functions could be a constant, polynomials, trigonometric
terms, etc. Here, we will be using polynomial terms as
candidate functions,

Θ(X) =
[
1 X XP2 XP3 · · ·

]
,

where XPi are i’th order polynomials of X. Each col-
umn of Θ(X) represents a candidate function for the

vectorfield f(x). We assume that only a few of these
terms are active in each row of f(x). We can then write
f(X) = Θ(X)Ξ, where Ξ =

[
ξ1 ξ2 · · · ξn

]
is a sparse

matrix of coefficients. The coefficients matrix Ξ can be
determined from the sparse regression problem

Ẋ = Θ(X)Ξ. (2)

Each column ξk of Ξ is a sparse vector of coefficients
and determines which terms are active in the right-hand
side of the corresponding row equation ẋk = fk(x) in
(1). Once Ξ has been determined each row of f may be
determined by

ẋk = fk(x) = Θ(xᵀ)ξk, k = 1, . . . , n.

To solve for Ξ in (2) we implement the algorithm de-
scribed in Ref. 17. Let Θ(X) have dimensions m × p
where p is the number of candidate functions and m the
number of time samples. We assume m � p since there
are many more time samples of data than there are can-
didate functions. Since both X and Ẋ are generally
contaminated with noise, (2) does not hold exactly. In-
stead,

Ẋ = Θ(X)Ξ + ηZ, (3)

where Z is a matrix of independent identically dis-
tributed Gaussian entries with zero mean, and η is the
noise magnitude. We seek to solve for Ξ in (3). To ensure
the restricted isometry property holds, we normalize the
columns of Θ(X) to a length of 1 by dividing each col-
umn by the `2-norm of that column18. Let l2 denote the
vector of `2-norms of the columns of Θ(X). We use that
diag(1/l2) = [diag(l2)]−1 to define a scaled coefficients
matrix such that the structure of (3) is unchanged,

Θ(X)Ξ = Θ(X)diag(1/l2)︸ ︷︷ ︸
Θsc(X)

diag(l2)Ξ︸ ︷︷ ︸
Ξsc

= Θsc(X)Ξsc

In the algorithm, Ξsc is initialized as the least-squares
solution. In each column of Ξsc all elements in the coeffi-
cient vector ξk,sc, smaller than a threshold value λk, are
set to zero. Then a new least-squares solution for Ξsc is
obtained for the remaining non-zero indices. These new
coefficients are again set to zero if they are smaller than
their column’s threshold value, λk, and the procedure is
continued until the non-zero elements of Ξsc converge.
Finally, the non-normalized coefficient matrix is given by
Ξ = diag(1/l2)Ξsc.

The algorithm is easily adjusted to include dependence
on a parameter, i.e., to consider systems on the form
ẋ = f(x;µ). The parameter µ is simply treated as an
additional state variable with zero time derivative in the
algorithm. The identification must then be based on a
collection of time series of the state variables obtained
for multiple fixed values of the parameter. The algorithm
also allows time-dependence and external forcing of the
vector field, i.e., systems on the form ẋ = f(x,u(t), t).
Here, the time variable t and the external forcing u(t)
are just added in the algorithm as additional variables.
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III. SIMULATION DATA GENERATION

We consider viscous plasma flow in a rectangular do-
main at the edge of a magnetically confined plasma
in the plane perpendicular to the magnetic field B =
B0ez. The transport of plasma into the domain is mod-
eled by a source centered at the left boundary. The
flow is described using Cartesian coordinates (x, y) ∈
[0, Lx] × [0, Ly]. The E × B drift velocity is given by
vE = (E×B)/B2

0 , where B0 = ‖B‖. We make the elec-
trostatic approximation such that E = −∇φ and define
the normalized velocity field v = (vx, vy)ᵀ as

v = B0vE⊥ = (ez ×∇φ)⊥ =

(
−∂yφ
∂xφ

)
. (4a)

Let Ω denote the z-component of the normalized vorticity
vector Ω = ∇ × B0vE = (∂xvy − ∂yvx)ez. Then the
normalized electrostatic potential is obtained from

∇2
⊥φ = Ω. (4b)

To describe the evolution of the pressure p(x, y, t) and
the vorticity Ω(x, y, t) we employ a normalized convection
model (

∂

∂t
+ v · ∇⊥

)
p = κ∇2

⊥p+ S(x), (4c)(
∂

∂t
+ v · ∇⊥

)
Ω +

∂p

∂y
= ν∇2

⊥Ω. (4d)

Here, κ is the diffusion coefficient, ν is the viscosity, and
S(x) is a pressure source. We choose the source as a
Gaussian function of x centered at the left boundary:

S(x) = qe−
x2

2σ2 . (4e)

The parameter q determines the strength of the source
and σ determines the width of the source. At the y = 0
and y = Ly boundaries we apply periodic boundary con-
ditions. For the pressure we apply a Neumann bound-
ary condition at the left boundary, ∂xp(0, y, t) = 0, and
a Dirichlet boundary condition at the right boundary,
p(Lx, y, t) = 0. These boundary conditions allow the
pressure gradient to increase as the source strength, q,
increases. For the electrostatic potential and vortic-
ity we apply Dirichlet boundary conditions at both the
left and right boundaries, Ω(0, y, t) = Ω(Lx, y, t) = 0,
φ(0, y, t) = φ(Lx, y, t) = 0. As initial condition each of
the system variables are set to zero at t = 0. The sys-
tem (4) is one of the simplest models used to describe
nonlinear plasma dynamics. Bian et al. 19 and Garcia
et al. 20 model the resistive g-instability in a plasma fluid
layer with a system similar to (4). Refs. 21–23 model
the interchange motions of isolated structures in magne-
tized plasmas with a system equivalent to (4). In the
field of fluid dynamics the system is often used to model
Rayleigh-Bénard convection24. More accurate models for
nonlinear plasma dynamics like the ESEL model25,26 can
be regarded as extensions to the convection model (4)
by including additional terms and couple more fields to
describe more nonlinear effects.

A. State Variable Definitions

Predator-prey models for the L–H transition are of-
ten based on three state variables; the potential energy
related to the pressure profile, the turbulent flow, and
the zonal flow. To formally define these variables in
terms of the state variables of the PDE system (4) we
first introduce some useful notation: An overline denotes
average over the y-variable, a tilde denotes the spatial
fluctuations, and angle brackets denote average over the
x-variable:

f̄(x, t) =
1

Ly

∫ Ly

0

f(x, y, t) dy,

f̃(x, y, t) = f(x, y, t)− f̄(x, t),

〈f̄〉(t) =
1

Lx

∫ Lx

0

f̄(x, t) dx.

To consistently define the state variables we consider (4)
with unchanged boundary conditions in the limit of no
source, no viscosity, and no diffusivity. Averaging (4c)
with κ = S = 0 over y and x, followed by integration by
parts, gives

∂t〈p̄〉 = −〈vx(∂xp)〉 − 〈vy(∂yp)〉 = 〈(∂xvx + ∂yvy)p〉 = 0.

Since the average of p is constant in time, even when the
pressure drives a flow, it can not be used as a measure for
the potential energy of the system. If we instead consider
(4c) with κ = S = 0, multiply by x, and then average
over y and x, we obtain

∂t〈xp〉 = 〈vxp〉. (5)

The spatially averaged kinetic energy of the flow is given
by K = 1

2 〈v · v〉. Considering (4d) with ν = 0, multiply-
ing by φ, and using integration by parts, it can be shown
that

1

2
∂t〈v · v〉 = −〈φ(∂tΩ)〉 = −〈vxp〉. (6)

Adding (5) and (6) gives the conservation equation

∂t

(
1

2
〈v · v〉+ 〈xp〉

)
= 0. (7)

Since the first term in (7) is the time derivative of the
kinetic energy we define the second term to be the time
derivative of the potential energy. We now separate the
kinetic energy into the zonal flow energy and the fluctu-
ation energy. Inserting the decomposition vx = v̄x + ṽx
with v̄x = 0 and vy = v̄y + ṽy into the expression v · v
and averaging over y and x gives

1

2
〈v · v〉 =

1

2
〈ṽ2x + ṽ2y〉+

1

2
〈v̄2y〉 (8)

The first term on the right-hand side is the kinetic energy
related to the fluctuations while the second term is the
kinetic energy related to the zonal flow.
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Lx Ly κ ν σ

1.0 1.0 0.05 0.05 0.1

Table I. The fixed parameter values for the system (4). q ∈
[0, 10] is a bifurcation parameter.

We can now define the average potential energy, P ,
related to the pressure profile, the average fluctuation
energy, N , and the zonal flow energy, F , by

P = 〈xp〉, N =
1

2
〈ṽ2x + ṽ2y〉, F =

1

2
〈v̄2y〉. (9)

Sugama and Horton 4 , and Ball, Dewar, and Sugama 5

define state variables for their L–H transition models
which are equivalent to the definitions in (9).

The time-derivatives of the energies (9) for the sys-
tem (4) can be written as

Ṗ = q
σ2

Lx

(
1− e−

L2
x

2σ2

)
+ κ〈x∂2xxp〉+ 〈vxp〉 (10a)

Ṅ = −〈vxp〉 − ν〈Ω2〉 − ν〈v̄y∂2xxv̄y〉+ 〈v̄y∂xṽxṽy〉 (10b)

Ḟ = −〈v̄y∂xṽxṽy〉+ ν〈v̄y∂2xxv̄y〉 (10c)

A physical modeling approach would use this set of equa-
tions as a starting point. In (10a) the source term, which
is proportional to q, causes an increase in P . The diffu-
sion term dampens P . The last term in (10a) and the first
term in (10b) is the pressure energy flux that transfers
energy between the potential energy and the turbulent
flow energy. The first viscosity term in (10b), ν〈Ω2〉 sup-

presses N , while the two last terms are equal to −Ḟ . The
last term in (10b) and the first term in (10c) derives from
the Reynolds stress, ṽxṽy. The Reynolds stress is gener-
ated by the turbulent flow and drives the zonal flow. The
last term in (10c) dampens the zonal flow energy due to
viscosity.

B. Parameters and Numerical Solver

We fix all parameter values except q which we con-
sider as a bifurcation parameter. The values of the
fixed parameters in (4) are listed in Table I. The bi-
furcation parameter q is fixed for each simulation, but
we consider multiple simulation data sets obtained for
different values of q ∈ [0, 10]. The FEM software pack-
age COMSOL Multiphysics R© is used as the numerical
solver27. The PDE system (4) and the corresponding
boundary conditions are defined on the rectangular do-
main [0, Lx]× [0, Ly]. To obtain the required simulation
data we use a triangular mesh containing 6282 domain
elements. The solution is initialized at t = 0 and run
with output time steps of ∆t = 0.05 until t = 400. At
each output time of the simulation the three energies (9)
and their time-derivatives are computed and saved.

Figure 1. The q = 8 high confinement solution at t = 200
showing p (upper left), Ω (upper right), vx (lower left), and
vy (lower right). The patterns are in motion and are drifting
downward for increasing time.

C. Solution Parameter Dependency

Simulation data was obtained for multiple values of
q ∈ [0, 10]. As q varies we observe four qualitatively
different types of solutions. In the (P,N, F )-state space
each solution type is characterized by the stability type
of the observed equilibrium points.

For q = 2 the solution to (4) converges to a static
solution. Here, the pressure is independent of the y-
coordinate, there is no vorticity and therefore no flow.
For the time evolution of the energies, P converges to a
positive constant value, while N = F = 0 for all time.
We denote the equilibrium (Ps, Ns, Fs) corresponding to
this static state the s-equilibrium.

For q = 6 the solution converges to a stable solution
where p and vx are symmetric, while Ω and vy are anti-
symmetric through a line at y = 1/2. The time evolution
of the energies P , N , and F contains two phases: The
first phase is similar to the solution for q = 2, where
N = F = 0 while P approaches an equilibrium value.
However, this equilibrium solution is unstable and, dur-
ing the second phase, N first increases rapidly and then
decreases toward an equilibrium value. This causes P to
make a little bump on the curve and then decrease to-
ward a lower stable equilibrium value. Since vx and vy
are nonzero almost everywhere there is a non-zonal flow,
N > 0, while the symmetry of vx and the antisymmetry
of vy cause the vanishing zonal flow, F = 0. The poten-
tial energy of the pressure, P , is a measure of the level of
plasma confinement. Since this state results in the lowest
confinement level of the four states we denote this state
the low confinement state and the corresponding equilib-
rium point (PL, NL, FL) is denoted the L-equilibrium.

For q = 8 the solution converges to the down-drifting
patterns shown in Fig. 1. The symmetry of the patterns
that exist for q = 6 is now broken. The time evolution
of the energies P , N , and F is shown in Fig. 2. The so-
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Figure 2. The q = 8 time evolution of the energies P , N ,
and F . The solution converges to the H-equilibrium where all
three energies are positive.

lution now consists of three phases: The first two phases
are similar to the solution phases for q = 6. In the third
phase F increases and approaches an equilibrium value.
This causes P to converge to a larger equilibrium value
and N to converge to a smaller equilibrium value. Com-
pared to the q = 6 solution, breaking of the symmetry
of vx and vy causes the zonal flow, F > 0. Since this
state results in a higher confinement than before we de-
note this state the high confinement state and the corre-
sponding equilibrium point (PH , NH , FH) is denoted the
H-equilibrium.

For q = 10 the solution converges to oscillating pat-
terns. p is oscillating between two clearly different pat-
terns, while the patterns for Ω, vx, and vy are mostly
oscillating in terms of amplitude. The time evolution of
the energies still consist of three phases similarly to the
solution for q = 8. However, the third phase is now re-
placed by convergence to a stable limit cycle, where the
three energies oscillate at identical frequencies. We de-
note this solution type the limit cycle solution.

D. Data-Based Bifurcation Diagram

Simulation data for P , N , and F was generated for
q ∈ {0, 0.1, . . . , 10}. For q > 10 more bifurcations oc-
cur, with the first one being a period doubling bifurca-
tion. Hence, the dynamics is getting increasingly more
complex and it is unlikely that can be described by one
simple ODE model. Hence, we limit the identification
to be based on this range of q-values. The data-based
bifurcation diagram shown in Fig. 3 is constructed by
approximately identifying the location of all equilibrium
points for each solution. The unstable s-equilibrium is
computed from a modified model with v = 0, the unsta-
ble L-equilibrium is estimated from the transient part of

0

2

4

P
∗

Ps

PL

PH

0

0.05

0.1

0.15

N
∗

Ns

NL

NH

0 qtc1 5 qtc2 qH 10

q

0

0.02

0.04

F
∗

Fs

FL

FH

Figure 3. Bifurcation diagram generated from simulation
data. Solid curves are stable equilibrium points, dashed
curves are unstable equilibrium points, while the dotted
curves show the amplitude of the stable limit cycle. The tran-
scritical bifurcations occurring at approximately qtc1 ≈ 2.92
and qtc2 ≈ 6.28 are marked with dots, while the Hopf bifur-
cation occurring at qH ≈ 8.15 is marked with asterisks.

the solution, and the unstable H-equilibrium is extrapo-
lated from the stable part of the H-equilibrium. Trans-
critical bifurcations occur at approximately qtc1 ≈ 2.92
and qtc2 ≈ 6.28, while a Hopf bifurcation occurs at
qH ≈ 8.15. The s-equilibrium is stable for 0 ≤ q < qtc1,
the L-equilibrium is stable for qtc1 < q < qtc2, the H-
equilibrium is stable for qtc2 < q < qH, and the limit
cycle is stable for q > qH. When a model for the dynam-
ics of the energies P , N , and F has been identified we
compare a bifurcation diagram for the model with this
data-based bifurcation diagram. The level of similarity
between the diagrams will be used as one of the measures
of how well the model fits the data.

IV. IDENTIFICATION OF TRANSITION DYNAMICS
WITH SINDY

As shown in Fig. 3 the simulation data transitions be-
tween four qualitatively different types of solutions when
q varies in [0, 10]. We identify the governing system
by modeling the four states of the system stepwise to
progressively include more complicated dynamics in the
model. We restrict the candidate polynomials of the
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0 1 2 3

q

0

0.5

1

1.5
P
s

Data
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Figure 4. The static equilibrium value Ps as a function of q
for the data (circles) and the model (solid line).

model to be up to second order. It is observed that the
inclusion of third order polynomials fails to improve the
model further. The quality of the model is determined
by visually comparing how well the model describes the
position of equilibrium points and how well solutions to
the model reproduce the simulated time series data.

A. Modeling the s-state

When q < qtc1 the solution converges to the static
equilibrium, where P > 0, N = F = 0. We apply the
SINDy algorithm to identify the governing equation for
the time evolution of P . For this we use simulation data
generated by solving (4) for q ∈ {0.0, 0.1, . . . , 2.9} such

that the data includes 30 time series of P (t) and Ṗ (t) at
increasing q-values. We choose as candidate functions a
linear function of q, and first and second order polynomial
terms of P :

Θ(q,P ) =
[
q P P 2

]
.

From the simulation data SINDy identifies the following
sparse model:

Ṗ = rq − χP, (11)

with r = 4.311× 10−2 and χ = 0.1031. Comparing (11)
with (4c) we see that the first term on the right-hand
side of (11) derives from the source term S and the sec-
ond term derives from the diffusion term, κ∇2

⊥p. The
model (11) has the unique equilibrium point Ps = rq/χ.
The plot in Fig. 4 compares the values of Ps as a function
of q for the simulation data and the model. The position
of the s-equilibrium is accurately described by the model.
Figure 5 shows comparisons of the time series data for P
and solutions to the model (11) with initial condition

0 10 20 30 40

t

0

0.5

1

1.5

P

q = 2.9

q = 2

q = 1

Data

Model

Figure 5. The time evolution of P as given by the simulation
data and by the model for different values of q.

P (0) = 0 for three different values of q. The model so-
lutions approximate the dynamics of the simulation data
sufficiently well that we will be using this model to de-
scribe the s-state.

B. Modeling the L-state

When qtc1 < q < qtc2 the solution converges to the
L-equilibrium where P,N > 0 and F = 0. We apply the
SINDy method to identify the underlying system for the
time evolution of P and N . For this we use simulation
data for q = {0.0, 0.1, . . . , 6.2}. We restrict the equations

for Ṗ and Ṅ to be up to second order polynomials:

Θ(q,P ,N) =
[
q P N P 2 PN N2

]
.

To pass on the parameter values determined in the previ-
ous section, we model Ṗ−rq+χP with the values of r and
χ determined in the previous section. With these settings
the SINDy algorithm identifies the following model:

Ṗ = rq − χP − η1N − η2N2 + η3NP, (12a)

Ṅ = N(γP − β1 − β2N), (12b)

with r = 4.311× 10−2, χ = 0.1031, η1 = 7.317, η2 =
41.13, η3 = 4.700, γ = 1.953, β1 = 2.422, β2 = 17.72.
The model (12) for the L-state reduces to the model (11)
for the s-state when N = 0 as intended. In (12a) three
additional terms have been added when compared with
(11). When the L-equilibrium becomes stable and N con-
verges to the positive value NL then P converges to PL

which is smaller than Ps. So the fluctuating energy N
causes a decrease in P . This effect is modeled by the
two terms with coefficients η1 and η2. When N initially
begins to increase the value of P also increases temporar-
ily, resulting in a little bump on the curve of P (t). This
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Figure 6. PL (top) and NL (bottom) as functions of q for the
data (circles) and the model (solid lines).

effect is described by the term with coefficient η3. Equa-
tion (12b) describes the evolution of the fluctuation en-
ergy N . When the pressure gradient becomes sufficiently
steep the constant profile characterizing the s-solution
becomes unstable and a fluctuating flow is generated.
This effect is modeled in (12b) by the term with coef-
ficient γ. Dissipation causes the fluctuation energy N to
be self-damped. This is described by the terms with co-
efficients β1 and β2. The L-equilibrium becomes stable
at a transcritical bifurcation at qtc1 = β1χ/(γr) = 2.967
which is close to the data-derived value of qtc1 ≈ 2.92.
The plots in Fig. 6 compare PL and NL as functions
of q for the simulation data and the model. The model
approximates the position of the L-equilibrium well. Fig-
ure 7 shows comparisons of the simulation data and solu-
tions to the model (12) for three different values of q. As
initial conditions for (12) we used P (0) = 0, while N(0)
was chosen to make the initial increase in N fit the cor-
responding simulation data: N(0) = 1× 10−9 for q = 4,
N(0) = 2× 10−11 for q = 5, and N(0) = 2.5× 10−12 for
q = 6. The plots in Fig. 7 show that the small bump in
the curve of P (t) created by the sudden increase in N(t)
is captured by the model. The fast increase in N and the
subsequent monotonic decrease to the equilibrium value
NL is also contained in the model. Since the model cap-
tures the position of the L-equilibrium and approximately
reproduces the time series data quantitatively correct we
will use this model to describe the L-state.

C. Modeling the H-state and the Limit Cycle State

When qtc2 < q < qH the solution converges to the
H-equilibrium where P,N, F > 0. For q > qH the H-
equilibrium is unstable and the solution converges to a
limit cycle. We apply SINDy to identify the governing

0

1

2

3

P
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q = 5

q = 4

0 20 40 60 80

t

0

0.05

0.1

0.15

N

q = 6

q = 5

q = 4

Data Model

Figure 7. Comparisons of the time evolution of P (top) and
N (bottom) as given by the simulation data and for the model
solution for different values of q.

equations for both of these states simultaneously. The
system is identified in the space of polynomials (P,N, F )
up to second order:

Θ(q,P ,N ,F ) =
[
q P N F P 2 PN · · · F 2

]
.

We again restrict the model to contain the previously
found terms, i.e., instead of identifying equations for Ṗ
and Ṅ directly we identify equations for Ṗ − rq + χP +
η1N+η2N

2−η3NP and Ṅ−N(γP −β1−β2N) with the
previously determined coefficients. In this case SINDy
identifies different models depending on which values of
q we include data for. This indicates that the dynamics
can not be accurately described in terms of the candi-
date polynomials. In the data-based bifurcation diagram
in Fig. 3 we see that when the H-equilibrium is stable,
PH and FH are increasing as functions of q, while NH

is slightly decreasing as a function of q. When includ-
ing data for q ∈ {0.0, 0.1, . . . , 9.2} SINDy identifies the

equation for the time evolution of F as Ḟ = F (α2N−µ).
This expression makes NH = µ/α2 independent of q.
When including data for q ∈ {0.0, 0.1, . . . , 10.0} SINDy
identifies the equation for the time evolution of F as
Ḟ = F (α2N − µP ). This gives a linear relationship be-
tween NH and PH , and both PH and NH are increasing
as functions of q. None of these expressions describe the
NH -dependency of q qualitatively correct. However, the
first expression for Ḟ approximates the behavior better
than the second expression, so we retain that. For the
equations for Ṗ and Ṅ we use the result obtained when
including data for q ∈ {0.0, 0.1, . . . , 10.0}. This results in
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r χ η1 η2 η3 γ β1

4.311 × 10−2 0.1031 7.317 41.13 4.700 1.953 2.422

β2 ϕ1 ϕ2 ϕ3 α1 α2 µ

17.72 70.50 1151 34.12 63.32 33.00 2.023

Table II. The parameter values for the system (13). q ∈ [0, 10]
is a bifurcation parameter.

the model

Ṗ = rq − χP − η1N − η2N2 + η3PN

− ϕ1F − ϕ2F
2 + ϕ3PF,

(13a)

Ṅ = N(γP − β1 − β2N − α1F ), (13b)

Ḟ = F (α2N − µ). (13c)

The coefficients identified by SINDy result in a poor ap-
proximation of the position of the H-equilibrium as a
function of q. Instead, the ratio µ/α2 is chosen to repro-
duce the data-derived value of qtc2 in the model. The
value of α1 is determined by a linear fit to a plot of
γPH − β1 − β2NH as a function of FH . The value of
α2 is chosen to approximately reproduce the frequency
of the oscillations. Finally, ϕ1, ϕ2, and ϕ3 are computed
to obtain the best possible approximation of FH as a
function of q and to reproduce the data-derived value of
qH in the model. Table II lists the parameter values for
(13).

In (13a) the zonal flow energy enters into the equa-

tion for Ṗ similarly to the turbulent flow. In (13b) the
zonal flow suppresses the turbulent flow and in (13c) the
turbulent flow drives the zonal flow. This predator-prey
type coupling between the zonal flow and the turbulent
flow is attributable to the Reynolds stress. The zonal
flow energy is linearly self-damping due to the viscocity
term. Near the H-equilibrium the zonal flow dampens
P , but the zonal flow also dampens N , which causes a
decrease in the damping of P , so the overall effect is that
P increases when F increases.

The plots in Fig. 8 compare PH , NH , and FH as func-
tions of q for the simulation data and the model. The
model approximates the value of FH accurately, since
the parameter values were chosen to obtain the best pos-
sible fit of FH as a function of q for the model. The
model also approximates PH and NH within a small rel-
ative error. The plots in Figs. 9 and 10 compare the
simulation data and the model solutions for q = 7 and
q = 10, respectively. The initial conditions were chosen
such that N and F begins to increase at about the same
time as in the corresponding data. For q = 7 the ini-
tial condition for the model solution shown in Fig. 9 was
(P (0), N(0), F (0)) = (0, 1× 10−12, 1× 10−28). For the
model solution F increases a little faster than the corre-
sponding data, but otherwise the model solution approx-
imates the data very well both qualitatively and quan-
titatively. For q = 8 the model solution (not shown)

1.8

2.1

2.4

P
H

0.058

0.06

0.062

N
H

6 6.5 7 7.5 8
q

0

0.01

0.02

F
H

Data Model

Figure 8. PH (top), NH (middle), and FH (bottom) as func-
tions of q for the data (circles) and the model (solid lines).
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Figure 9. Comparison of the time evolution of P (top), N
(middle), and F (bottom) for the simulation data and for the
model solution for q = 7.

spirals into the H-equilibrium, while the corresponding
data approaches the H-equilibrium monotonically. Oth-
erwise the model solution approximates the data very
well. For q = 9 the model solution (not shown) con-
verges to a stable limit cycle like the data. The model
fails to reproduce the amplitude and frequency of the
oscillations. For q = 10 the initial condition for the
model solution shown in Fig. 10 was (P (0), N(0), F (0)) =
(0, 1× 10−13, 1× 10−53). The model solution still con-
verges to a stable limit cycle like the data. The model
solution now correctly reproduces the frequency of the
oscillations, but it fails to reproduce the amplitude of
the oscillations. The mean value of P during the oscil-
lations is lower for the model solution than for the data.
This might indicate that we are approaching the maxi-
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Figure 10. Comparison of the time evolution of P (top), N
(middle), and F (bottom) for the simulation data and for the
model solution for q = 10.

mum value of q for which the model is valid. The failure
to reproduce the correct amplitude of the oscillations is
expected, since amplitude fitting was not chosen as a
criterion during the modeling process. Overall, the final
model (13) reproduces the simulation data very well both
qualitatively and quantitatively for q ∈ [0, 10].

V. BIFURCATION ANALYSIS

Using the SINDy algorithm we have derived the
model (13) with the parameters listed in Table II for the
time evolution of the three energies P , N , F computed
from solutions to the convection problem (4). We now
carry out a bifurcation analysis for the model (13) and
summarize the results in a bifurcation diagram.

A. Equilibrium Points

The system has a total of five equilibrium points, but
we only list and name the three equilibrium points which
are stable for some value of q ∈ [0, 10]. The s-equilibrium
is

(Ps, Ns, Fs) =

(
r

χ
q, 0, 0

)
, q > 0. (14)

The L-equilibrium enters the physical domain in a tran-
scritical bifurcation at q = qtc1 = β1χ/(γr). Define

aPL = γ(β2η3 − γη2),

bPL = −(β1β2η3 + β2
2χ+ β2γη1 − 2β1γη2),

cPL = β2
2rq + β1β2η1 − β2

1η2,

and

aNL = β2η3 − γη2,
bNL = −(β2χ+ γη1 − β1η3),

cNL = γrq − β1χ.

Then the components of the L-equilibrium (PL, NL, FL),
q > qtc1 are

PL =
1

2aPL

(
−bPL −

√
b2PL − 4aPLcPL

)
, (15a)

NL =
1

2aNL

(
−bNL −

√
b2NL − 4aNLcNL

)
, (15b)

FL = 0. (15c)

The H-equilibrium enters the physical domain in a tran-
scritical bifurcation at q = qtc2, where

qtc2 =
1

γr

(
β1χ− bNL

µ

α2
− aNL

µ2

α2
2

)
.

We define

aPH = α2
2γ(γϕ2 − α1ϕ3),

bPH = −α2

(
α2
1η3µ− α2

1α2χ− α1α2β1ϕ3 − α1α2γϕ1

− α1β2µϕ3 + 2α2β1γϕ2 + 2β2γµϕ2

)
,

cPH = −(α2
1α

2
2rq − α2

1α2η1µ− α2
1η2µ

2 + α1α
2
2β1ϕ1

+ α1α2β2µϕ1 − α2
2β

2
1ϕ2 − 2α2β1β2µϕ2 − β2

2µ
2ϕ2),

and

aFH = α2
2(γϕ2 − α1ϕ3),

bFH = α2(α1α2χ− α1η3µ− α2β1ϕ3 + α2γϕ1 − β2µϕ3),

cFH = −
(
α2
2γrq − α2

2β1χ+ α2β1η3µ− α2β2χµ

− α2η1γµ+ β2η3µ
2 − η2γµ2

)
.

Then the H-equilibrium can be written as (PH , NH , FH),
q > qtc2 with

PH =
1

2aPH

(
−bPH +

√
b2PH − 4aPH cPH

)
, (16a)

NH =
µ

α2
, (16b)

FH =
1

2aFH

(
−bFH +

√
b2FH − 4aFH cFH

)
. (16c)

B. Stability of Equilibrium Points

The stability type of the equilibrium points are deter-
mined by the eigenvalues of the Jacobian matrix of (13)
evaluated at the equilibrium point. Let As denote the
Jacobian matrix evaluated at the static equilibrium. As

is a upper triangular matrix, so the eigenvalues are given
by the diagonal elements,

λ1 = −χ, λ2 =
γr

χ
q − β1, λ3 = −µ.
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All three eigenvalues are real. λ1 and λ3 are negative
constants, while λ2 is negative for q < qtc1 and positive
for q > qtc1. So the s-equilibrium is a stable node for
q < qtc1 and a saddle for q > qtc1.

Denote the Jacobian matrix evaluated at the L-
equilibrium by AL. Define

bL = β2NL + χ− η3NL,

cL = −NL((β2η3 − 2γη2)NL + γη3PL − β2χ− γη1).

Then the eigenvalues of AL are

λ1 = −1

2

(
bL −

√
b2L − 4cL

)
,

λ2 = −1

2

(
bL +

√
b2L − 4cL

)
,

λ3 = α2NL − µ.

Re(λ1) is positive for q < qtc1 and negative for q > qtc1,
while Re(λ2) < 0 for all q. Re(λ3) is negative for q < qtc2
and positive for q > qtc2. So the L-equilibrium is a saddle
for q < qtc1. It is a stable node or stable focus-node for
qtc1 < q < qtc2 and a saddle-focus or an unstable node
for q > qtc2.

Denote the Jacobian matrix evaluated at the H-
equilibrium by AH . Let τ = Tr(AH) be the trace, σ
the sum of principal minors, and δ = det(AH) the deter-
minant of AH ,

τ = −χ+ η3NH + ϕ3FH − β2NH ,

σ = NH(α1α2FH + β2χ− β2η3NH − β2ϕ3FH ,

+ γη1 + 2γη2NH − γη3PH)

δ = α2NHFH(−α1χ+ α1η3NH + α1ϕ3FH

− γϕ1 − 2γϕ2FH + γϕ3PH).

Then the characteristic polynomial is given by

p(λ) = λ3 − τλ2 + σλ− δ.

The eigenvalues are obtained as the three complex so-
lutions to p(λ) = 0. Inserting λ = iω and solving
p(iω) = 0 shows that a Hopf bifurcation occurs when
στ = δ. By numerically solving this equation for q we
obtain qH = 8.152. The eigenvalue λ1 is positive for
q < qtc2 and negative for q > qtc2. Re(λ2) and Re(λ3)
are negative for q < qH and positive for q > qH. So the
H-equilibrium is a saddle or a saddle-focus for q < qtc2,
it is a stable focus-node for qtc2 < q < qH, and it is a
saddle-focus for q > qH.

C. Bifurcation Diagram

The positions and the stability of the equilibrium
points for (13) as functions of q are summarized in the bi-
furcation diagram in Fig. 11. A comparison of the bifur-
cation diagram for the model with the data-based bifur-
cation diagram in Fig. 3 demonstrates that the model ap-
proximates the positions of the three equilibrium points

0
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P
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PH

0

0.05

0.1

0.15

N
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Ns

NL

NH

0 qtc1 5 qtc2 qH 10

q

0
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0.04

F
∗

Fs
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Figure 11. Bifurcation diagram for the model. Solid curves
are stable equilibrium points, dashed curves are unstable equi-
librium points, while the dotted curve show the amplitude of
the limit cycle solution. The transcritical bifurcations oc-
curring at approximately qtc1 = 2.967 and qtc2 = 6.281 are
marked with dots, while the Hopf bifurcation occurring at
qH = 8.152 is marked with asterisks.

and three bifurcation points very well. The average po-
sition and amplitude of the limit cycle oscillations differ
between the two bifurcation diagrams, but these were not
expected to be fully identical.

VI. CONCLUSION

The solution to a convection problem with a pressure
source centered at the left boundary can be characterized
by three state variables: the potential energy related to
the pressure gradient, P , the fluctuation energy, N , and
the zonal flow energy, F . Depending on the strength of
the pressure source, q, we identified four different types
of solutions to the convection problem. Three of these so-
lution types corresponded to equilibrium points and the
fourth type corresponded to a limit cycle in the (P,N, F )-
state space. Simulation data was generated for multiple
fixed values of q ∈ [0, 10] by computing and saving the
three energy variables P , N , and F and their time deriva-
tives at each output time step while solving the convec-
tion problem.

Purely based on the simulation data we used SINDy17

and some data fitting to identify a nonlinear dynami-
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cal system that models the time evolution of the three
state variables. This approach revealed a predator-prey
relationship between the zonal flow energy and the tur-
bulent flow energy. We investigated the quality of the
model by comparing positions of equilibrium points, bi-
furcation points, and solutions with the corresponding
data from which the model was extracted. The model
proved to be very accurate for each of these parameters.

We have demonstrated an approach to recovering re-
duced models for plasma dynamics which serves as an
alternative to the physical modeling approach. Further
work could include identification of a reduced L–H transi-
tion model based on simulation data from a fluid model
which is able to reproduce the L–H transition such as
the HESEL model28,29. The same modeling approach
could ultimately also be applied to derive models from
experimental data. Even more accurate models might
be obtained by replacing the SINDy algorithm with the
more advanced implicit-SINDy algorithm30 which ex-
tends SINDy to allow rational functions.
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